|
||
Mathematics Magazine for Grades 1-12 |
||
|
||
Smarandacheials (2) |
||
Edited by J. Dezert |
||
|
||
4) In the case
k=4:
!n!4
= ∏(n-4i)
= n(n-4)(n-8)… .
0<|n-4i|≤n
Thus !9!4
= 9(9-4)(9-8)(9-12)(9-16) = 9(5)(1)(-3)(-7) = 945.
The sequence
is: -15, 144, 105, 1024, 945, -14400, -10395, -147456, -135135, 2822400,
2027025,... 5) In the case
k=5:
!n!5
= ∏(n-5i) = n(n-5)(n-10)… .
0<|n-5i|≤n
Thus !11!5
= 11(11-5)(11-10)(11-15)(11-20) = 11(6)(1)(-4)(-9) = 2376.
The sequence
is: -24, -42, 336, 216, 2500, 2376, 4032, -52416, -33264, -562500,
-532224, -891072,
16039296, … .
More general:
!n!mk
= ∏(n-k·i)
0<|n-k·i|≤m
For examples:
!7!32
= 7(7-2)(7-4)(7-6)(7-8)(7-10) = 7(5)(3)(1)(-1)(-3) = 315.
!7!92
= 7(7-2)(7-4)(7-6)(7-8)(7-10)(7-12)(7-14)(7-16) =
7(5)(3)(1)(-1)(-3)(-5)(-7)(-9) = -99225. References: www.gallup.unm.edu/~smarandache/Smarandacheials.htm. |
||