|
||
Mathematics Magazine for Grades 1-12 |
||
|
||
Smarandacheials (1) |
||
Edited by J. Dezert |
||
|
||
Let
n>k≥1 be two integers. Then
the Smarandacheial is defined as: !n!k
= ∏(n-k·i)
0<|n-k·i|≤n
For examples:
0<|n-i|≤n Thus
!5!=5(5-1)(5-2)(5-3)(5-4)(5-6)(5-7)(5-8)(5-9)(5-10)=5·4·3·2·1·(-1)·(-2)·(-3)·(-4)·(-5)
=-14400. The sequence
is: 4, -36, 576, -14400, 518400, -25401600,
1625702400, -131681894400, 13168189440000, 2) In the case
k=2:
a) If n is
odd, then
!n!2
= ∏(n-2i) =
n(n-2)(n-4)…(3)(1)(-1)(-3)…(-n+4)(-n+2)(-n) = (-1)(n+1)/2(n!!)2.
0<|n-2i|≤n
b) If n is
even, then
!n!2
= ∏(n-2i) =
n(n-2)(n-4)…(4)(2)(-2)(-4)…(-n+4)(-n+2)(-n) = (-1)n/2(n!!)2.
0<|n-2i|≤n
Thus: !3!2
= 3(3-2)(3-4)(3-6) = 9 and
!4!2 = 4(4-2)(4-6)(4-8) = 64. The sequence is: 9, 64, -225, -2304, 11025, 147456, -893025, -14745600, 108056025, 2123366400, … 3) In the case
k=3:
0<|n-3i|≤n
Thus !7!3
= 7(7-3)(7-6)(7-9)(7-12) = 7(4)(1)(-2)(-5) = 280.
The sequence
is: -8, 40, 324, 280, -2240, -26244, -22400, 246400, 3779136, 3203200,
-44844800,.. |
||