SOLVING SYSTEMS OF QUADRATIC INEQUALITIES BY USING THE DOUBLE (or TRIPLE) NUMBER LINE

(Authored by Nghi H Nguyen - Updated on Jan. 01, 2024)

Generalities on solving quadratic inequalities

Given a quadratic inequality in one variable x under standard form:

$$
f(x)=a x^{2}+b x+c \leq 0 \text { or } f(x)=a x^{2}+b x+c \geq 0
$$

Solving this inequality means finding the solution set (a set of values) of x that makes the inequality true.

Example of quadratic inequalities:
$f(x)=3 x^{2}+7 x-15<0$

$$
f(x)=5 x^{2}+8 x-11 \leq 0
$$

$$
\begin{aligned}
& f(x)=-6 x^{2}+11 x+17>0 \\
& f(x)=7 x^{2}-12 x+13 \geq 0
\end{aligned}
$$

The solution set of a quadratic inequality is expressed in the form of intervals.
Examples of solution set:
Open intervals:
$(-1,8)$
$(-\infty, 7)$

Half open intervals:
$(-\infty, 4]$
$(-\infty,-5]$
Closed intervals:
$[-2,5]$
[-0.35, 3.14]
$[-1 / 3,7 / 3]$
Solving quadratic inequalities by the number line
Example1. Solve the inequality: $f(x)=3 x^{2}-8 x-11<0$
Solution. First, solve $f(x)=0$ to find the two x-intercepts (two real roots). They are ($x 1=-1$) and ($x 2=11 / 3$). Plot these real roots on a number line.

Page 1 of 5

Use the origin as the check point. Since $f(0)=-11<0$, therefor, the origin is located on the true segment, and the solution set is the open interval $(-1,11 / 3)$.

There is another way to find the answer. Since a > 0, the graph of $f(x)$ is an upward parabola. Between the two real roots, the graph is below the axis OX, meaning $f(x)$ is negative. Therefor, The solution set is the open interval ($-1,11 / 3$)

Example 2. Solve: $-3 x^{2}<-5 x+2$

Solution. Bring the inequality to standard form: $f(x)=-3 x^{2}+5 x-2<0$
First solve $f(x)=0$. Since $a+b+c=0$, one real root is $\mathrm{x} 1=1$ and the other $\mathrm{x} 2=\mathrm{c} / \mathrm{a}=$ $-2 /-3=2 / 3$. The graph of $f(x)$ is a downward parabola. So, between the real roots $f(x)$ is positive. The solution set for $\mathrm{f}(\mathrm{x})<0$ are the two open intervals $(-\infty, 2 / 3)$ and $(1,+\infty)$

Example 3. Solve $\quad 16 x^{2} \geq 62 x-21$
Solution. Standard form: $f(x)=16 x^{2}-62 x+21 \geq 0$
First solve $\mathrm{f}(\mathrm{x})=0$ by the Transforming Method (Google, Studylib.net)
Solve transformed equation: $f^{\prime}(x)=x^{2}-62 x+336=0 \quad(a . c=16 \times 21=336)$. Compose factor pairs of 336 . They are: $(2,168)$, $(4,82),(6,56)$.
This last sum is $6+56=62=-b$. So, the 2 real roots of $f^{\prime}(x)$ are 6 and 56.
The 2 real roots of $f(x)=0$ are $(x 1=6 / a=6 / 16=3 / 8)$ and $(x 2=56 / 6=28 / 3)$
Plot these 2 real roots on the number line. The graph is an upward parabola ($a>0$). The solution set for $f(x) \geq 0$ are the 2 half closed intervals ($-\infty, 3 / 8]$ and $[28 / 3,+\infty$)

Page 2 of 5

Solving a system of two quadratic inequalities by a Double Number Line

Given a system of two quadratic inequalities in one variable:

$$
\begin{array}{ll}
f(x)=a x^{2}+b x+c \leq 0 & (\text { or } \geq 0) \\
g(x)=d x^{2}+e x+f \leq 0 & (o r \geq 0)
\end{array}
$$

Solving this system means finding the solution set (set of values) of x that make both inequalities true.

We can use the algebraic method by using a sign chart (sign table). However, using a double number line is simpler and faster.

Example 4. Solve the system:
$f(x)=x^{2}-2 x-3<0$
$g(x)=x^{2}-6 x+5 \leq 0$
Solution. First step, solve the 2 equations:
$f(x)=x^{2}-2 x-3=0 \quad$ Two real roots: (-1) and (3)
$g(x)=x^{2}-6 x+5=0 \quad$ Two real roots: (1) and (5)
Next, figure the 2 solution sets of $f(x)<0$ and $g(x) \leq 0$ on a double number line, with $f(x)$ on the upper line and $g(x)$ on the second line.

By superimposing, we see that the segment $(1,3)$ is the solution set that satisfies both inequalities.

The solution set is the half open interval [1,3) because (1) is included in the solution set.

Page 3 of 5

Example 5. Solve by the double number line the system:
$f(x)=3 x^{2}-4 x-7>0$
$g(x)=x^{2}-x-6 \geq 0$
Solution. First solve the 2 equations:
$f(x)=3 x^{2}-4 x-7=0 \quad$ Two real roots: (-1) and (7/3)
$g(x)=x^{2}-x-6=0 \quad$ Two real roots: (-2) and (3)
Graph on the double number line the solution set of $f(x)$ on the upper line, and the solution set of $g(x)$ on the second line.

By superimposing, we see that the combined solution set is the 2 half open intervals: $(-\infty,-2]$ and $[3,+\infty)$.
The 2 end points (-2) and (3) belong to the combined solution set.
Example 6. Solve the system:

$$
\begin{aligned}
& f(x)=3 x^{2}-5 x+2>0 \\
& g(x)=x^{2}-5 x-6<0
\end{aligned}
$$

Solution. First, solve $\mathrm{f}(\mathrm{x})=0$ and $\mathrm{g}(\mathrm{x})=0$

$f(x)=0$	Two real roots (1) and (2/3)	Upward parabola
$g(x)=0$	Two real roots (-1) and (6)	Upward parabola

Graph the solution set of $f(x)$ on the first line, and $g(x)$ on the below line.

Page 4 of 5

By superimposing, we see that the combined solution set of the system are the open intervals (-1, 2/3) and (1, 6).

Solving a system of three quadratic inequalities by the Triple Number Line

We can extend this method to solving a system of 3 quadratic inequalities.
Example 7. Solve the system of 3 quadratic inequalities:
$f(x)=x^{2}+x-2<0$
$g(x)=2 x^{2}-7 x+5>0$
$h(x)=2 x^{2}+5 x-7>0$
Solution. First step, solve the 3 quadratic equations:
$f(x)=x^{2}+x-2=0 \quad$ Two real roots: (1) and (-2) Upward parabola
$g(x)=2 x^{2}-7 x+5=0 \quad$ Two real roots: (1) and (5/2) Upward parabola
$h(x)=2 x^{2}-5 x-7=0 \quad$ Two real roots: (-1) and (7/2) Upward parabola

Graph a triple number line, and figure all the solution sets on their related line:

By superimposing, we see that the combined solution set is the open interval ($-2,-\mathbf{1}$), where all 3 inequalities are satisfied: $f(x)<0$, and $g(x)>0$, and $h(x)>0$.
(This math article was authored by Nghi H Nguyen, the author of

- The Transforming Method to solve quadratic equations.
- The Nghi Nguyen Method to solve trig inequalities - Updated on Jan. 01, 2024)

Page 5 of 5

